

LA-UR-18-30534

Approved for public release; distribution is unlimited.

Title: Los Alamos National Laboratory Method for 235U-231Pa Chronometry

Measurements

Author(s): Wende, Allison Marie

Kayzar-Boggs, Theresa Marie

Denton, Joanna S. Inglis, Jeremy David Kinman, William Scott Steiner, Robert Ernest

Intended for: Technical Meeting at LANL with LLNL and CIAE representatives regarding

Cooperation in Age Dating for Nuclear Forensics related to NSDD work

Issued: 2018-11-02

Los Alamos National Laboratory Method for ²³⁵U-²³¹Pa Chronometry Measurements

CIAE/USDOE NSDD Meeting November 6, 2018

Allison Wende, Theresa Kayzar-Boggs, Joanna Denton, Jeremy Inglis, Will Kinman, Rob Steiner

²³⁵U⁻²³¹Pa Chronometry Sample Analysis

- Thermo Scientific <u>Neptune Plus</u> used to analyze chronometry samples
 - Multi-collector ICP-MS with desolvating sample introduction system
- Separate cup configurations for measuring PaT (traced Pa) UxI (untraced U), and UxT (traced U) fractions
- Strategies for correcting instrumental effects
 - Mass bias, gain, abundance sensitivity

Traced Pa: Cup Configuration

Traced Pa Sequence

U-010 Wash 1

Wash 2

Acid Blank

U-005A

Wash 1

Wash 2

Acid Blank

PaT Sample 1

Wash 1

Wash 2

Acid Blank

PaT Sample 2

Wash 1

Wash 2

Acid Blank

U-010

Wash 1

Wash 2

Acid Blank

U-005A

Traced Pa Neptune Plus Cup Configuration							
IC5 IC3 IC2/L5 IC1 B L4							
PaT Samples		231Pa	232Th	233Pa	235U		
U Standards	233U	234U	235U	236U	238U		

Ion Counter
Faraday

Pa Sample Fractions

- ²³¹Pa and ²³³Pa on full-size SEMs (~10,000-120,000 cps)
- ²³⁵U (Faraday) to confirm purification of Pa fraction
- ²³²Th (SEM) to monitor potential ²³²Th+H interference on ²³³Pa

U Bracketing Standards

- No certified Pa standards
- ²³⁵U and ²³⁸U on Faradays, ²³⁴U and ²³⁶U on full-size SEMs

Traced Pa: Instrument Bias

Traced Pa Sequence

U-010

Wash 1

Wash 2

Acid Blank

U-005A

Wash 1

Wash 2

Acid Blank

PaT Sample 1

Wash 1

Wash 2

Acid Blank

PaT Sample 2

Wash 1

Wash 2

Acid Blank

U-010

Wash 1

Wash 2

Acid Blank

U-005A

<u>U005A</u> QC Standard

U010

Mass Bias and

Gain Corrections

Traced Pa Neptune Plus Cup Configuration							
IC5 IC3 IC2/L5 IC1 B L4							
PaT Samples		231Pa	232Th	233Pa	235U		
U Standards	233U	234U	235U	236U	238U		

Ion Counter

Faraday

Exponential Mass Bias Correction

$$\beta = \frac{ln\left(\frac{R_{True}^{235/238}}{R_{Meas}^{235/238}}\right)}{ln\left(\frac{mass_{235}}{mass_{238}}\right)}$$

$$MBCR^{23X/23Y} = Avg R_{meas}^{23X/23Y} \cdot \left(\frac{mass 23X}{mass 23Y}\right)^{\beta}$$

Ion Counter Gain Corrections

$$GF^{23X/238} = \frac{R_{True}^{23x/238}}{R_{M.B.\ Corr\ set\ x}^{23x/238}}$$

QC Gain Corrected Ratio

$$R_{corr}^{23X/238} = MBCR^{23X/238} \cdot GF^{23X/238}$$

Pa Sample Gain Corrected Ratio

$$R_{corr}^{231/233} = MBCR^{231/233} \cdot \left(\frac{GF^{234/238}}{GF^{236/238}}\right)$$

Traced Pa: Abundance Sensitivity

T	Traced Pa Bracketing Standard U Isotope Compositions							
CRM 234 /238 '						Unc. (k=2)		
U010	5.45 x 10 ⁻⁵	0.14%	0.010138	0.10%	6.92 x 10 ⁻⁵	0.083%		
U005-A	3.42 x 10 ⁻⁵	0.14%	0.005092	0.10%	1.20 x 10 ⁻⁵	0.083%		

- U010, U005-A: well-constrained uncertainties
- > 98% ²³⁸U abundance in standards
 - Tailing from ²³⁸U effects ²³⁶U/²³⁸U and ²³⁴U/²³⁸U ratios
 - Impact ion counter gain calculations calculated from U010 and applied to U005-A QCs and Pa samples

~250 cps tail from ²³⁸U on ~25,000 cps ²³⁶U peak

Traced Pa: Abundance Sensitivity

- Baselines measured prior to each U standard (U010) and QC (U005-A) in the run
 - Capture any changes in tail magnitude that may result from plasma fluctuations during run
- Four baseline points measured to calculate exponential curve
 - 0.5 AMU above and below center mass
 - 0.35 AMU above and below center mass

U Baseline Method
Run prior to each
U010 and U005-A
in the run

Number of Blocks Cycles/Block Cup Configuration pa ic.ccf IC2 IC2 L5 Control Cup | Control Cup | Jump Mode Mass Set RPQ/IC3 A RPQ/IC1 B Integration Idle L5 Time [s] Integrations Main 242.692 254.51 4.194 NONE

<u>U Method</u> Run for each U010 and U005-A in the run

Traced Pa: Abundance Sensitivity

U010 ²³⁶ U Baseline Measurements and Tail Calculations						
Cycle	0.50 amu below CM (cps)	0.35 amu below CM (cps)	0.35 amu above CM (cps)	0.50 amu above CM (cps)	Calculated 236 Tail at CM (cps)	
1	146.49	144.97	279.25	354.02	214.05	
2	143.44	155.65	305.19	375.38	224.89	
3	138.86	144.97	294.51	364.70	215.64	
4	157.17	155.65	321.97	367.75	231.99	
5	163.28	163.28	326.55	367.75	237.87	
6	166.33	172.43	352.49	367.75	246.93	
7	123.61	149.55	323.50	384.53	218.98	
Average:					227.19	
STDEV:					12.28	

 Counts at four off-peak masses input into Excel growth function to calculate and subtract tailing

Traced Pa: Tail Correction Assessment

- U005-A ²³⁴U/²³⁸U and ²³⁶U/²³⁸U ratios demonstrate importance of tail corrections on minor isotopes in U010 and U005-A
- No tail corrections made to ²³¹Pa and ²³³Pa isotopes
- PaT samples less sensitive to tail corrections made in mass bias and gain standard (U010)
- Without Pa standard, tail corrections vital to ensuring validity of instrumental bias corrections

9/19/1968

Untraced U: Instrument Setup

<u>Untraced U Sequence</u>

U Standard 1
Wash 1
Wash 2
Acid Blank
U Standard 2
Wash 1
Wash 2

Acid Blank

Uxl Sample 1

Wash 1

Wash 2

Acid Blank

Uxl Sample 2
Wash 1

Wash 2

Acid Blank

U Standard 1

Wash 1

Wash 2

Acid Blank

U Standard 2

Untraced U Neptune Plus Cup Configuration							
IC5 IC3 IC2 L5 IC1 B L4							
U Samples/QCs	233U	234U	235U	235U	236U	238U	
U Standards 233U 234U 235U 236U 238U							

Ion Counter Faraday

Untraced U Sample

²³⁵U on Faraday or ion counter

O off faraday of forf co

U standard 1

(e.g. U010, U050, U500, U850) Mass Bias and Gain Corrections

U QC Standard

(e.g. U005-A, U960, U010) U composition similar to samples

- U samples screened prior to analysis
 - Standards with similar U isotopic compositions are selected to bracket samples
- Mass bias and gain corrections as in PaT method
 - Additional bracketing standard added to sequence if ²³⁵U run on ion counter in sample/QC to correct for IC2 gain

Untraced U: Abundance Sensitivity

- Tailing on ²³⁶U or ²³⁴U managed by RPQs (energy filters)
 - No RPQs in PaT method- U in standard and Pa in samples may have different transmissions through RPQs
- No RPQ on IC5: tailing on ²³³U corrected by 4 point baseline method (when needed)

Traced U: Instrument Setup

<u>Traced U Sequence</u>

Wash 2

Acid Blank

U Standard 2

U Standard 1		
Wash 1		
Wash 2		
Acid Blank		U Sar
U Standard 2		U S [†]
Wash 1		0.5
Wash 2		
Acid Blank		
UxT Sample 1		
Wash 1		
Wash 2		
Acid Blank	U standard	l 1
UxT Sample 2	(e.g. IRMM 74-1,	
Wash 1	Mass Bias Corre	•
Wash 2	111000 5100 00110	
Acid Blank		
U Standard 1		
Wash 1	<u>U QC Stand</u>	<u>ard</u>

(e.g IRMM 74-2)

U composition similar to

samples

Traced U Neptune Plus Cup Configuration								
L2 L1 C H1 H2								
U Samples/QCs	233U	234U	235U	236U	238U			
U Standards 233U 234U 235U 236U 238U								

Ion Counter
Faraday

- UxT samples typically traced with 1:1 ratio of ²³³U:²³⁸U or ²³³U:²³⁵U
- All U isotopes measured on Faradays
- Typically include standards with ²³³U as bracketing standard and/or QC
- Exponential mass bias corrections applied using ²³³U/²³⁸U or ²³³U/²³⁵U ratio of bracketing standard

²³⁵U⁻²³¹Pa Chronometry Sample Analysis: Summary

- PaT and UxI measurements: combination of ion counters and Faradays
 - Mass bias corrections made with ²³⁵U/²³⁸U ratios (Faraday-Faraday)
 - Gain corrections made using minor U isotope ratios (ion counter-Faraday)
 - Abundance sensitivity improved using baseline measurements (PaT) or RPQs (UxI)
- UxT measurements: Faraday measurements
 - Mass bias corrections with ²³³U/²³⁸U or ²³³U/²³⁵U (Faraday-Faraday) ratios